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Outline

« NASA'’s Active Combustion Control interests

* Motivation: Ultra-low emissions, lean burning,
MultiPoint-Lean Direct Injection (LDI)
combustors
— More susceptible to instability

* Qur approach for dealing with combustor
thermo-acoustic instabillities

« Qutcome of our recent instability control
experiments

« Technology transfer, future plans
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NASA Active Combustion Controls
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Effect of Fuel Injection Schemes on NOx Emission
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Advantages of Multi-Point Lean Direct Injection (MP-LDI)
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Issues that Affect Combustor Instability / Acoustics
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Why is Lean-Burning Combustor More Sensitive?

1. Higher-performance
fuel injectors: more
turbulence

2. Reduced film cooling: reduced
damping

3. More uniform temperature and
composition 4. No dilution holes:

reduced flame-holding

Glenn Research Center
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How does heat release interact with pressure?
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Combustion Instability Control Strateqy

Objective: Suppress combustion thermo-acoustic instabilities when
they occur

Closed-Loop Self-Excited System

= Natural feed-back process J

+‘ Fuel-air
Mixture system

—
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How do we deal with combustor instabilities?

1. Smart design
2. Modulate air to get out-of-phase cancellation
3. Fuel-modulation to get out-of-phase cancellation

However...

Method 1 is preferred, but we’re not sure i1t’s enough.

Method 2 requires lots of actuation power input and bulk.
Method 2 also may induce diffuser flow separation due to
flow perturbation.

Method 3 requires the least actuation power and bulk and
produces the most energy change.
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Why is instability control so difficult?
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Our Technical Challenges

« Combustor dynamics largely unmodeled

« Liquid fuel — introduces additional unmodeled dynamics
including time delay (atomization, vaporization, ...)

* Actuation system — enough bandwidth and authority, not just
valve (also feedline, injection, ...)

« Experimental testbed for actuation, feedline dynamics required
« Simplified models needed for control design evaluation
» Control methods required to:

— identify instability

— suppress instability in presence of large time delay,
substantial noise, unmodeled dynamics
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Active Combustion Control of Instability

Spring 2004

Large amplitude, low-frequency instability
suppressed by 90%

plaic1, Run 423 and 425, 040527 - 040603
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Our Approach: Active Combustion Control Via Fuel Modulation

High-frequency fuel valve

Advanced Control Methods
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Realistic Engine Hardware Instability Testing

Test Rig Designed to Replicate Real Instability at Engine Conditions
» Acoustic Analyses Guided Dimensions
* Real Engine Lengths, Area Changes, & Flows
* Real Engine Components
* Instrumentation for steady-state (P, T), dynamic pressure, single-point emissions
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Combustion Instability Control Testing

Test Rig Designed to Replicate Real Instability at Engine Conditions

NASA SNR R004p38 and Engine TX3081.2B
T

04 ‘ ‘ ‘
q Al  Enoi I
o Combustor lnstrumentatlon = NgINE L) Rjg
(pressures, temp’s) 8 03 \A. ‘//
' oI E N e it b '
J..IE‘ || s = ]
\ Gl =g = |
. = n
0.2 h
S LN
ot
0.1 / I V
v
‘% { ! | \\‘W\.MM
"f\s.,.q.‘,,( \"-u ~"'\'n
O o 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
Research Combustor Rig at UTRC Comparison of Engine and

Rig amplitude spectra of
combustor internal pressure

Glenn Research Center

at Lewis Field



Geometry mod. produced substantial change in instability behavior

Alternate geometry (“280 Hz")
Spool sections inserted downstream of the pre-diffuser

» dramatically changes the frequency and amplitude of
||| the instability

* peak amplitude and resonant frequency varied
considerably with operating condition and f/a

Nominal geometry (“570 Hz”)
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Combustion Dynamics Modeling

-

Reduced-order oscillator
models
Run fast to allow parametric

studies in support of control
system development

Combustor
Acoustics
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Simplified Quasi-1D
dynamic models

Allow physics-based control
method validation

Power Density (psi**:
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Results from NASA
Sectored-1D Model of
LPP Combustor Rig

Detailed, physics-based dynamic
models

Fundamental understanding of
combustor dynamics to aid passive,
active instability suppression

Penn State Injector
Response Model Plot
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Sectored 1-D Combustion Instability Model — D. Paxson
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High-Frequency Configuration
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Predicted Mid-Length Instability — Sectored 1-D Model
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High-Bandwidth Fuel Actuator Characterization Testing
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Dynamic Pressure
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Valve, Feed-system Characterization Rig at NASA GRC
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High-Bandwidth Fuel Actuator
Steady-State Operational Data

GaTech high_ Measured Flov;rf::r.nP;::te) Displacement
response fuel
valve in 5 :
= = E E. 0.8
characterization 15
rig in CE7A 58 o
S s
Pintle Dis placem ent, in.

Frequency Response Dynamic
Characterization Data

DP23alinput, psifvolt
B
)
Lo
s

-18
§ = j
-360 b !
- ]
-540 ol
¥
-720 ——— Oft-1V 5
L]
1ft-1VvV =
900 *. A
— — 2ft-1V

Frequency, Hz

Glenn Research Center

at Lewis Field



Fuel Delivery System Dynamic Response
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Stroboscopic Image of Dynamic
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High-Bandwidth Fuel Actuator

Combustor Pressure Response to Fuel Modulation
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Control Strategies to Deal with Combustion Instability

Objective

— Perturb the fuel with the right amplitude and at the right phase to cancel the
instability

Challenges
— Control action delay, noise, unknown disturbances

Approach
— Use reduced-order models for development
— Use simplified physics-based model for validation before test

Control methods
— Empirical: Adaptive phase shifting based on achieved cancellation

— Model-based: Set the proper phase for cancellation based on a model of
the predicted instability and disturbances

Glenn Research Center
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Adaptive phase shifting control:

“Adaptive Sliding Phasor Averaged Control” —
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Model-Based Control:

“Multi-Scale Predictive Damper Control” — D.K. Le
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Combustion Instability Control Test Implementation

Sensed Combustor Pressure

Fuel Injector
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Control methods
Implemented in real-time
computer

Rig operated at nominal
engine temperature and
pressure (P3=175psia,
T3=775degF)

530Hz resonant frequency

related to observed engine
instability
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Predicted Instability Control Results: Sectored 1-D Model

Baseline, high-frequency configuration

Amplitude Spectrum -- ACC sim
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Test Results (testing done at UTRC, late 2002):
First successful demonstration of combustion instability
suppression in a realistic aero-engine environment
-- NASA Team Honor Award--

Adaptive phase-shifting control method Model-based control method
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Experimental Pressure Amplitude Spectra Plots Showing Effects of Active
Combustion Control Over Combustion Instability Peak Pressures
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Test Results (testing done at NASA, 2004):

Over 90% reduction in pressure spectral peak for large, low-
frequency instability
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Summary

Combustion instability control successfully demonstrated in a
realistic aircraft engine environment for two different combustor
configurations

In-house capability for actuator design, modeling methods, control
methods, combustor dynamics testing

Technology Transfer:

— Publications:

10 NASA-authored / co-authored conference papers and TM’s
Sponsored ~20 university-authored papers and journal articles
3 invited presentations to industry / academia groups

2 contractor reports

7 R&T Reports articles

AlAA book chapter co-authored by Pratt and NASA

— Application of technology:

Glenn Research Center

GE considering NASA models and control methods for use with an advanced
combustor design (Prop 21)
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Future Plans

Integrate controls, combustor design, sensor, and
actuator technologies to provide:

— Intelligent fuel/air management system with
temporal and spatial fuel modulation for

 Instability suppression
 Pattern factor control
* Emissions minimization

4
&
S
$

— to enable...

§ e oaa

» Combustor with extremely low emissions
throughout the engine operating envelope
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